UCRL-ID-123220

UniTree Name Server Internals

D. Mecozzi
J. Minton
January 1996
<
&7 @
S\IAN
Q O
¥ N S
S o‘

This is an informal report intended primarily for internal or limited external
distribution. The opinions and conclusions stated are those of the author and may
or may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161

UniTree Name Server Internals

DonnaMecozzi and Jim Minton
Lawrence Livermore National Laboratory
Livermore, California

INTRODUCTION

The UniTree Name Server (UNS) is one of several servers which make up the UniTree
storage system. The Name Server is responsible for mapping names to capabilities.
Names are generally human readable ASCI|I strings of any length. Capabilities are unique
256-bit identifiers that point to files, directories, or symbolic links. The Name Server
implements a UNIX style hierarchical directory structure to facilitate name-to-capability
mapping. The principa task of the Name Server isto manage the directories which make
up the UniTree directory structure.

The principle clients of the Name Server are the FTP Daemon, NFS and afew UniTree
utility routines. However, the Name Server is ageneralized server and will accept
messages from any client.

The purpose of this paper isto describe the internal workings of the UniTree Name Server.
In cases where it seems appropriate, the motivation for a particular choice of algorithm as
well as a description of the algorithm itself will be given.

1.0 Directories

Each UniTree directory contains state information and an arbitrary number of entries. An
entry isaname-capability pair. An example of apiece of state information is the directory
owners UID. The Name Server implements directories by chaining together one or more
(1024 byte) blocks from afile managed by Cachelib. (The Cachelib software layer is
shown in Figure 12 and is discussed in section 3.4.)

Figure 1 illustrates adirectory composed of several Cachelib blocks chained together. The
first block in every directory iscaled aBlockHead. When the entry spacein the
BlockHead becomes full, an EntryBlock is attached to the BlockHead. When the entry
gpace in an EntryBlock becomes full, another EntryBlock is attached to the last EntryBlock
in the directory's EntryBlock chain. Thus, adirectory can grow to accommodate an
arbitrary number of entries. A directory may also have one or more NameBlocks, as
shown in Figure 1. NameBlocks hold "overflow" characters from long entry names and
very long symbolic link text. Aswith EntryBlocks, additional NameBlocks are attached to
the last NameBlock in the directory 's NameBlock chain when the required name spaceis
unavailable.

* This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore
National Laboratory under contract No. W-7405-ENG-48.

-1-

Block Head

Cachelib
BlockDes
Directo y
Header Entr y Block Entr yBlock
Cache Li Cachell
BlockD es BlockDes
NameBlock NameBlock
Cachelib CachelLib
BlockDes BlockDes
Entry Entry
Space Space

Figure 1. Thisdrawing illustrates the composition of aUniTree directory. A directory
consists of one or more 1024 byte blocks. A directory always has one and only one
BlockHead. A directory has zero or more NameBlocks and zero or more Entry Blocks.

1.1 BlockHead

The BlockHead isthe “top” level block in adirectory and is composed of four
distinct structures:

» aCachdib header (16 bytes of data)
» aBlockDescriptor (32 bytes of data)
» aDirectoryHeader (112 bytes of data)
* an EntrySpace (864 bytes)

Figure 2 shows an overview of a BlockHead.

BlockHead
CachelibHeader

BlockDescriptor

32

DirectoryHeader

EntrySpace

The EntrySpace is 864 bytes |long and
can hold up to 18 entries. Each entry is
48 bytesin length and can be either a
DirectEntry or an IndirectEntry.

Figure 2. The BlockHead Structure is a composite of four structures. a
CachelibHeader, a BlockDescriptor, a DirectoryHeader, and an EntrySpace.

Inincludefilensdi r. h aBlockHead is defined as:

typedef struct

Bl ockDescriptorStruct Bl ockDes;

Di rect oryHeader Struct Di r Header;

DirectEntryStrct Ent ry[MAX_ENTRI ES_| N_BLOCK_HEAD] ;
} Bl ockHeadStruct;

The CachelibHeader is actually part of the structure of the block obtained from the
Cachelib software, so its structure is not defined as part of the BlockHead structure.

1.1.1 Cachelib Header

A Cachelib header hasthreefields. The FreeList pointer isnon zero if the block is
on the free (available) list. The Checksum will be non zero if Cachelib has been
instructed to checksum the blocks. The TimeStamp contains the time the block was
written. A Cachelib header is shown in Figure 3. A discussion of the Cachelib
software layer is given below in section 3.4.

Cachelib Header

FreeList
Checksum

Time Stamp

Figure 3. The Cachelib Header occupies four 32-bit words. The field widthsin
this diagram are given in bytes.

Inincludefilecache. h the CachdibHeader is defined as;

t ypedef struct bjectHeader Struct

unsi gned Freeli st ;

unsi gned Checksum

i nt 64 Ti meSt anp;
} oj ect Header Struct;

1.1.2 Block Descriptors

The BlockDescriptor contains data describing how the cachelib block is used by the
Name Server. Figure 4 shows the format of a BlockDescriptor. The Consistency
Word contains one of the following strings, "BkHd", "EnBk", "NmBK" or
"SmLK", depending on how the block is being used. The BlockHeadld,
NextBlockld and NameBlockld contain Cachelib identifiers. The bit fields (InUse
and Indirect) in the BlockDescriptor have a one-to-one mapping to each entry in the
EntrySpace. Thesefieldsindicate whether or not an entry is currently InUse and
whether an InUse entry is an IndirectEntry or not. (The value of a specific InUse
bit is 1 whenever the corresponding EntrySpace has an entry init. Thevaue of a
specific Indirect bit is 1 whenever the corresponding entry should be interpreted as
an IndirectEntry.) Depending on how the block is being used, one and only one of
the BlockHead, EntryBlock, NameBlock or SymbolicLink bitsisset. The
TrashDirectory bit is set in the BlockHead of a*“ .trash” directory. (Trash
directories are discussed in section 2.0.) Finally, ThisBlockld contains the
Cachdlib identifier of the block itsalf.

The ConsistencyWord of a BlockHead contains the string "BkHd". The
BlockHead bit will be set true (set to 1). The BlockHeadld and ThisBlockld will be

equal and set to the value of the Cachelib identifier of the block. A BlockHead only
holds 18 entries, so only the first 18 Indirect/InUse elements will be used by the
BlockHead.

1 Consistency Word
2 Block Head 1d
3 Next Block Id

4 NameBlock Id

8 This Block Id

Figure 4. The BlockDescriptor occupies eight 32-bit words. The field widthsin
this diagram are given in bits.

Inincludefilensdi r. h athe BlockDescriptor is defined as:

typedef struct

Consi stencyString Consi stencyWrd;

unsi gned Bl ockHeadl d;

unsi gned Next Bl ockl d;

unsi gned NaneBl ockl d;

unsi gned Ent r ySpaceMapl;

unsi gned Ent r ySpaceMap2;

unsi gned Ent r ySpaceMap3 : 16;
unsi gned Bl ockHead 1
unsi gned Ent ryBl ock 1;
unsi gned NaneBl ock 1;
unsi gned Synbol i cLi nk 1;
unsi gned TrashDi rectory 1
unsi gned Unusedl S I
unsi gned Thi sBl ockl d;

} Bl ockDescriptorStruct;

1.1.3 Directory Header

The Directory Header contains information necessary to provide UNIX style access
to the directory. Figure 5 depicts a DirectoryHeader structure. The Directory
Header has afield for the UID and GID of the user that owns the directory. The
Version field is used to note significant changes in the Name Server's data base.
LinkCount contains a count of the number of directories that reference the directory.
Thefour timefields, TimeCreated, Timel astAccessed, TimelL astModified, and
TimeHeaderUpdated are micro second time values that indicate when the directory
was created, last read, entry space was last modified, and when datain the
Directory Header last changed. The ProtectionLevel isadvisory only and rangesin
valuefrom Oto 7. Permissions are the standard UNIX mode bits, read, write and
execute (rwx), with mode bits for the owner, group and others. The
ExpirationTime is used only for ".trash" directories (discussed in section 2.0).
NumBlocksis acount of the number of blocks comprising the directory. The
EncryptionKey is aunique value used to decrypt capabilities and verify that they
identify the directory.

Directory Header Struct

uibD
GID

Version
Link Count

Time Created
Time Last Accessed

Time Last Modified

Time Header Updated

Protection Level
Permissions
Expiration Time
Num Blocks

Encryption Key

Unused

Figure5. A Directory Header structure. Thefield widthsin this diagram are given
in bits.

Inincludefilensdi r . h athe Directory Header is defined as:

t ypedef struct

int Ul D;

int G D,

unsi gned Ver si on;

i nt Li nkCount ;

i nt 64 Ti meCr eat ed;

i nt 64 Ti neLast Accessed,;

i nt 64 Ti meLast Mbdi fi ed;

i nt 64 Ti meHeader Last Modi fi ed;

unsi gned Prot ecti onLevel ;
unsi gned Per m ssi ons;

-7-

i nt Expi rati onTi ne;
unsi gned NurBl ocks;
i nt 64 Encrypti onKey;
unsi gned Unused?[10];

} DirectoryHeader Struct;

1.1.4 EntrySpace

The BlockHead has enough EntrySpace to hold 18 entries. When anew entry isto
be inserted into the directory, the Name Server examines the InUse bitsto find the
first available unused entry in the EntrySpace. The appropriate InUse bit becomes
true (set to 1) when the entry is added to the EntrySpace. When an entry is deleted
the corresponding InUse bit becomes false and the entry space becomes available
for new entries. There are two types of entries: DirectEntries and IndirectEntries.

Direct Entries

DirectEntries are composed of a Name and Capability pair. Figure 6 depictsthe
structure of a DirectEntry. The length of the name string that can be kept in a
DirectEntry is 16 characters or less. When a string is less than 16 characters
long, aNIL character is appended to the end of the string. That way, the length
of the entry name can easily be determined. An entry name of exactly 16
characters does not have atrailing NIL character.

Direct Entry

Name

Capability

Figure 6. The structure of a Direct Entry. Thefield widthsin this diagram are
given in bytes.

Inincludefilensdi r . h athe DirectEntry structure is defined as.

typedef struct

Di rect NaneString Nane;
Capability Resour cel d;
} DirectEntryStruct;

Indirect Entries
IndirectEntries are also composed of a Name and Capability pair, but since the
Name is greater than 16 characters part of it overflowsinto aNameBlock. The

first 8 characters of the name are kept in the IndirectEntry and the remaining
characters are kept in one or more NameBlocks. An IndirectEntry also contains

-8-

a"pointer" to locate the characters that are stored in aNameBlock. The
"pointer" contains two pieces of data: a NameBlockld and an Offset. The
NameBlockld isthe Cachelib identifier of the NameBlock were the string
begins. The Offset isazero origin index into the NameSpace and points to the
beginning of the overflow string.

Indirect Entry

NameBlockld
NameBlock Off set

Name

Capability

Figure 7. The structure of an IndirectEntry. Thefield widthsin this diagram
are givenin bytes.

Inincludefilensdi r . h athe IndirectEntry structureis defined as:

t ypedef struct
{

unsi gned NaneBl ockl d;
unsi gned NameBl ockOf f set ;
Partial NameString Nane;

Capabi lity Resour cel d;

} IndirectEntryStruct;

1.2 Name Blocks

NameBlocks are used to hold “overflow” characters from entry names that exceed
16 characters and symboalic link text that exceeds 864 characters. A NameBlock is
composed of the following fields:

» aCachdib header (16 bytes of data)
» aBlockDescriptor (32 bytes of data)
 aHoleSize (4 bytes of data)

» aNameSpaceUsage bits (32 bytes of data)
* Name Space (940 bytes)

Figure 8 shows an overview of a NameBlock.

The ConsistencyWord in the BlockDescriptor of a NameBlock will be "NmBK". In
addition, the NameBlock bit in the BlockDescriptor will betrue (setto 1). The
Indirect/InUse elements of the BlockDescriptor are not used by a NameBlock and
should al be set to 0. The value of the BlockHeadld in the BlockDescriptor will be
that of the BlockHead that the NameBlock in associated with.

-9-

1.2.1 HoleSize

The HoleSize contains the character length of the largest string that can be placed in

the NameBlock. Thisvaueis computed each time the name spaceis atered by the

addition or deletion of characters. (The NameSpaceUsage bits are used to compute
the HoleSize.) The HoleSize facilitates finding a NameBlock that can accommodate
astring.

1.2.2 NameSpaceUsage bits

NameSpaceUsage is an array of bits each of which correspond to a (32-bit) word in
the NameSpace. Whenever characters are put into aword of the NameSpace, the
corresponding NameSpaceUsage bit isturned on (set to 1). For example, if
characters are put into words 193 and 194 of the NameSpace area, bits 193 and 194
in the NameSpaceUsage bit array areturned on. Similarly, when characters are
removed from the NameSpace, the corresponding NameSpacelUsage bits are turned
off (set to 0).

1.2.3 Name Space

The NameSpace is 235 (32-hit) words of data. The NameSpace is allocated in units
of words. The strings stored in the NameSpace are of variable length and are
terminated with aNIL character. That way, each string stored in the NameSpace
can be easily identified.

When the Name Server istrying to locate a NameBlock in which to store an
"overflow" string, it checks the HoleSize of attached NameBlocks. If the HoleSize
of aNameBIlock islarge enough to hold the string plus the trailing NIL character,
then the NameSpaceUsage bits of that NameBlock are examined to locate the hole
in the NameBlock. If thereisno hole large enough to hold the string, or there are
no NameBIlocks associated with the directory, then a NameBlock is obtained and
linked onto the NameBlock chain.

-10-

NameBlock

Cachelib Header

Block Descriptor

32
Hole Size 4

Name Space Usage

Each bit in the NameSpaceUsage maps
to one of the 235 (32-bit) words below.
The value of the bit is 1 when the word
isin use. 32

Name Space

The Name Space is 235 (32-bit) words
long. The Name Spaceisallocated in
units of words. Strings stored in the
Name Space are of variable length and
are NIL terminated.

Figure 8. NameBlocks hold “overflow” characters from strings that are too long to
fit into other blocks. Field widths are given in bytes.

Inincludefilensdi r . h aNameBlock is defined as:

typedef struct

Bl ockDescriptorStruct Bl ockDes;

unsi gned Hol eSi ze;
unsi gned NaneSpaceUsage[NAME_SPACE USAGE_LENGTH] ;
char Nanme[NAME_SPACE_CHAR _LENGTH] ;

} Bl ockHeadStruct;

The CachelibHeader is actually part of the structure of the block obtained from the
cachelib software, so its structure is not defined as part of the NameBlock structure.

-11-

1.2.4 Storing Long Names

A firgt-fit algorithm is used to find a place for overflow characters. If there are no
NameBlocks attached to the directory, one is obtained and linked to the BlockHead.
If one or more NameBlocks are attached to the directory, each NameBlock in the
chain isexamined, in the order they are linked, for ahole large enough to hold the
characters. The hole must be large enough to hold the characters plusatrailing NIL
character. If aholelarge enough isfound, the characters are copied into the hole,
the NameBlock is marked "dirty" and all of the blocks associated with this update
(transaction) are written to the database.

If alarge enough hole cannot be found in any of the NameBlocks a new
NameBlock is obtained. It islinked to the last NameBlock in the chain, and the
characters are put into this new NameBlock. If astring contains more characters
than will fit in asingle empty NameBlock, as many NameBlocks as needed are
obtained and linked to the directory, until all of the characters have been put into
NameBlocks. Whenever the last character of aNameBlock isnon-NIL, the
NameBlock is being used to hold a string that is greater-than or equal-to 864
charactersin length.

Thereis an interesting end-case to note. Suppose a string that isa multiple of 864
charactersis being stored into a NameBlock. Such astring will exactly fill a
(multiple of) NameBlock(s). But there must be space for the trailing NIL
character. The NIL character will be placed into the first character position of the
last (newly obtained) NameBlock.

1.3 EntryBlocks

EntryBlocks are used to hold entries that exceed the 18 entries that can be keptin a
BlockHead. Thefirst EntryBlock that is attached to a BlockHead will be "pointed
at " by the NextBlockld field in the BlockHead's BlockDescriptor. As additional
EntryBlocks are added to the directory, they are serially linked through the
NextBlockld field in the BlockDescriptor.

An EntryBlock is composed of the following fields:

» aCachelib header (16 bytes of data)
» aBlockDescriptor (32 bytes of data)
* Entry Space (960 bytes)

Figure 9 shows an overview of an EntryBlock.

The ConsistencyWord in the BlockDescriptor of an EntryBlock will be "EnBK". In
addition, the EntryBlock bit in the BlockDescriptor will betrue (setto 1). An
EntryBlock can hold up to 20 entries so al of the Indirect/InUse elements are used
by an EntryBlock. The value of the BlockHeadld in the BlockDescriptor will be the
Id of the BlockHead that the EntryBlock is associated with.

Like the BlockHead's EntrySpace, an EntryBlock's EntrySpace is used to store
Direct and Indirect entries. Entry types are discussed in section 1.1.4.

-12 -

EntryBlock
Cachelib Header |4

Block Descriptor

32

Unused Space

16

Entry Space

The Entry Space is 960 bytes
long and can hold up to 20
entries. Each entry is48 bytesin
length and can be either a
DirectEntry or an IndirectEntry.

Figure 9. Anoverview of an EntryBlock. The field widthsin thisdiagram are
given in units of bytes.

Inincludefilensdi r . h aan EntryBlock is defined as:

typedef struct

Bl ockDescriptorStruct Bl ockDes;

unsi gned Unused[4] ;

DirectEntryStruct Ent ry[MAX_ENTRI ES_| N_ENTRY_BLOCK] ;
} Bl ockHeadStruct;

The CachelibHeader is actually part of the structure of the block obtained from the
cachelib software, so its structure is not defined as part of the EntryBlock structure.

-13-

1.4 Symbolic Link Blocks

The SymbolicLinkBlock isthe “top” level block in asymbolic link and is composed
of four distinct structures:

a Cachelib header (16 bytes of data)
aBlockDescriptor (32 bytes of data)
aDirectoryHeader (112 bytes of data)
NameSpace (864 bytes)

Figure 10 shows an overview of a SymbolicLink.

The ConsistencyWord of the BlockDescriptor in a SymbolicLink contains the
string, "SmLkK". The SymbolicLink bit in the BlockDescriptor will be true (set to
1). The BlockHeadld field and the ThisBlockld field will be equal and contain the
value of the Cachelib identifier of the block. NameBlocks are the only other type of
block that will be chained to a SymbolicLink, and they will be chained through the
NameBlockld field. The Indirect/InUse elements are not used by a SymbolicLink
and should all be set to 0.

The information kept in the DirectoryHeader structure of a SymbolicLink is
identical to that kept for adirectory. In addition, there are no semantic differences
in the way the DirectoryHeader information is interpreted by the Name Server for a
SymbolicLink or adirectory. The DirectoryHeader is discussed in section 1.1.3.

The NameSpace of a SymbolicLink can hold up to 864 characters. When the data
to be kept exceeds 864 characters, one or more NameBlocks is attached to the
SymbolicLink through the NameBlockld fields. No distinction is made between
the way overflow entry names and overflow SymbolicLink data are stored in
NameBlocks. NameBlocks were discussed in section 1.2.

-14 -

SymbolicLink

Cachelib Header |4
Block Descriptor

The SymbolicLink bit is set whenever
ablock isused asasymboliclink. 32

Directory Header

112

Name Space

The Name Space can hold up to
864 characters of symbolic link
data. If more space is needed,
Name Blocks may be linked
through the BlockDescriptor.

Figure 10. Anoverview of a Symbolic Link block. Thefield widthsin this
diagram are given in units of bytes.

Inincludefilensdi r . h aNameBlock is defined as:

typedef struct

Bl ockDescriptorStruct Bl ockDes;
Di rectoryHeader Struct Di rHdr;
Synbol i cLi nkName Nane;

} SynbolicLi nkStruct;

The CachelibHeader is actually part of the structure of the block obtained from the
cachelib software, so its structure is not defined as part of the SymbolicLink
structure.

-15-

2.0 Shiva

The Name Server is amulti-threaded process that manages the UniTree directory structure.
Most of the Name Server threads are dedicated to servicing requests made by clients.
However, one of the Name Server threads, called Shiva, after the Hindu goddess of
destruction, is dedicated to removing expired objects from ".trash” directories.

2.1 Trash Directories

A ".trash" directory is created in each user's Uni Tree home directory when the user
is added to the UniTree system. The purpose of the ".trash™" directory isto provide
atemporary holding place from which a user might recover filesthat have been
inadvertently deleted. When a user deletes afile, it ismoved to the ".trash”
directory. Any filethat has been in the ".trash" directory longer than the expiration
timeiseligible for complete destruction by Shiva.

2.2 Expiration Time

The Name Server permits each ".trash" directory to have an expiration time
associated with it. This expiration time can be set when the directory is created, or
may be changed at alater time. In addition, the Name Server has a site configurable
default expiration time that isused for ".trash" directories that do not have a
specific expiration time. The global default expiration time can be queried and
modified with system administrator commands. At any time, a".trash" directory
with a specific expiration time can be changed to use the global default expiration
time. (To change or query the expiration time of a specific directory or the Name
Server's default expiration time, commandsin the utility, Bonni e, may be used.)

2.3 Deleting Expired Entries

Shiva awakens periodically to rumble through each ".trash" directory in the
UniTree system. The amount of time that Shiva suspends between the trash
rummaging and the maximum number of filesto remove a atime are site
configurable. (A command in Bonni e may also be used to change the suspend
time and the maximum number of entriesto delete at atime.)

Shivamaintains an internal table that mapsaUID to a".trash" directory. When
Shiva awakens, she beginswith thefirst entry in thistable. Shivagetsalist of the
first n entriesin the ".trash" directory. The entry names are encoded with the time
and date they were moved into the ".trash" directory. That timeis subtracted from
the current time and if that value is greater than the expiration time, theentry is
deleted from the ".trash" directory. If not, the entry isleft in the trash, and Shiva
moves on to the next entry in the list. Shiva advances to the next entry in the UID
to ".trash" table when al n entries have been examined. If a".trash" directory has
more than n entries, severa passes through Shivamay be required before all of the
filesareremoved. After Shiva has rumbled through every entry in the UID to
".trash" table, her insatiable appetite will be somewnhat abated, and she will once

again go to sleep.

-16 -

2.4 UID to Trash Directory Mapping

To quickly locate auser’s".trash" directory the Name Server builds and maintains a
table called the TrashHash table that maps UIDs to trash can Ids. Trash can Idsare
the Cachelib block identifier of the ".trash" directory's BlockHead. In addition to
the use described above in section 2.3, the TrashHash table is used by the Name
Server whenever adirectory entry containing afile capability isdeleted and isto be
moved into a".trash" directory.

The TrashHash table is constructed each time the Name Server isinitialized. The
Name Server builds the table from information found in the password file. Each
entry in the password file contains auser’ s UID and a path name to the user’ s home
directory. Since".trash" directoriesreside in the user's home directory, the trash
can Id of each user's ".trash" directory can be found and entered into the
TrashHash table.

A smple hash is performed on the UID and the resulting val ue serves as an index
into the TrashHash table's array of pointers. Each pointer isthe beginning of a
linked list of data structures which map UIDsto trash can Ids. Figure 11 illustrates
the structure of the TrashHash table.

Trash | Trash | Trash | 00
Next Next Next

Figure 11. The TrashHash table which maps UIDs to trash can Ids.
Inincludefilensdi r . h athe TrashHash tableis defined as;

typedef struct TrashHashTabl e
Semaphor e Sem

TrashHashEl enent * THE[NUM LI STS | N TRASH HASH] ;
} TrashHashTabl e;

-17 -

and the elementsin the array of lists are defined as:

t ypedef struct TrashHashEl enent

{
struct TrashHashEl ement *Next;

i nt Ul D,
unsi gned TI D;
} TrashHashEl enent;

2.5 Names of Items in Trash Directories

Whenever Entries are put into a".trash" directory they are given a name that
encodes the time they were put into the ".trash”" directory to make them unique, yet
still easily identifiable. The".trash” entry name is constructed by appending the
Date, Time, and a“uniquifier” to the original name. The format of atrash can name

IS
<Ori gi nal Nane>#<Dat e>#<Ti me>#<Uni qui fi er>
wher e
Dat e isin the format mm-dd-yy
Ti me isin the format hh:mm:ss
Uni qui fier isamonotonically increasing 4 digit number.

So, if on November 2, 1993 at 3:46 PM a user deletes afile entry that was named
Thi sReal | yCool Fi l e

and the Uniquifier value is currently 1233, the ".trash” directory entry for thisfile
would be named

Thi sReal | yCool Fi | e#11-02- 93#15: 46: 00#1234

3.0 Software levels

The Name Server software can be divided into seven distinct layers. Figure 12 depicts
these layers. Notice that each of these layers depend on the SMILE tasking layer.

-18 -

RPC

LibUnix Interface

Name Serv er Interface

Block Manipulation

Cachelib

Block I/ O

Figure 12. The seven software layers that comprise the UniTree Name Server and
the SMILE tasking layer.

3.1 RPC Layer

The RPC layer is composed of the procedures that implement the Remote Procedure
Call interface. These routines provide the communication mechanism through
which the Name Server communicates with client processes. In addition, the RPC
layer implements the “thread” package which allows the Name Server torun asa
multi-threaded process.

The user level routinesin the RPC layer are divided into two distinct categories: the
client routines and the (Name) server routines. The client routines are found in a
library called “libunix.a’. For acomplete discussion of the client routines refer the
libunix.a documentation. The server routines are “called” by the server side of the
RPC layer. Theroutines called by the server side of the RPC layer compose the
LibUnix software layer shown in Figure 12.

3.2 LibUnix Layer

The name “LibUnix” isaremnant of by-gone times and even in thosetimeswas a
poorly chosen name. However, as with most historical mistakes, it is hard to get

-19-

rid of and therefore remains. The so-called LibUnix routines in the Name Server
are al confined to asingle file named “LFuncs.c’. The name“LFuncs’ was chosen
because all of the LibUnix routines begin with the letter 'I' and all of the routines
are value returning functions. Theroutinesin thislayer are called by the RPC

layer.

Each routine in the LibUnix layer in the Name Server has a“mirror-image”’ routine
inthe client library libunix.a. Figure 13 shows an example in which a client
process is attempting to insert afile capability into a directory.

linsert (DirCap, CapTol nsert, Nane, AccountCap, U D GD);

linsert (DirCap, CapTol nsert, Name, AccountCap, U D GD);

Figure 13. Noticethatanl i nsert procedure exists in both the client LibUnix
layer and in the server LibUnix layer.

Although Account capabilities are passed to all of the LibUnix routines, they are, in
almost all cases, ignored. They are passed into the LibUnix layer, but are not
passed to any of the lower software layers. Account capabilities were used in the
original versions of LibUnix and are included in the present version to preserve the
function signatures. Thereis, however, one somewhat ugly instance in which
Account capabilitiesareused. At LLNL thereisaneed, when making adirectory,
to pass a protection level from the FTP Daemon to the Name Server. Because there
are no provisions for a protection level inthel makedi r procedure, the protection
level is passed by putting it into the protection level field of the Account capability.
The Name Server | makedi r function extracts the protection level from the
Account capability and passes it through to the routine in the Name Server Interface
layer. We aren't proud of this, but we do it. Adding an additional protection level
parameter to | nkdi r, at thistime, was considered to be too painful.

-20 -

The following routines comprise the LibUnix layer

Ichange

To change fields of adirectory header. In olden timeswhen LINCSwas in full
flower and the earth was indeed a beautiful placethel change function was
used to change any and al of the directory header fields. In these harsh and
misbegotten times the only fields that remain to be changed are the
ExpirationTime and the ProtectionLevel. And time advances ever forward.

i nt
| change (DirCap, Account, Label, Data, UD GD)
Capability *Di r Cap;
Capability *Account ;
i nt Label ;
i nt *Dat a;
i nt Ul D;
i nt G b

lcrt

To create adirectory and return its capability.

i nt
lcrt (Addr, ProtectionLevel, Account, UD GD, Perns, DirCap)

Net Addr ess * Addr ;
unsi gned ProtectionLevel ;
Capabi lity *Account ;
i nt ul b
i nt C D,
i nt Per mrs;
Capabi lity *Di r Cap;

|delete

To delete an entry specified by name from adirectory.

i nt
I delete (DirCap, Nane, Account, UD, 4dD)

Capabi lity *Di r Cap;
char *Nane;
Capabi lity * Account ;
i nt ul b,
i nt G b

|destroy

To destroy a block from the Name Server database file. Notice that “destroy” is
arelative term—the block is being destroyed from the Name Server’s point of
view, but isonly being deleted from Cachelib’s point of view.

i nt
[destroy (1d)
unsi gned | d;

-21-

Ifetch
To fetch the capability specified by name from a directory.

i nt
Ifetch (DirCap, Nanme, Account, U D G D ReturnedCap)

Capability *Di r Cap;
char *Name;
Capability *Account ;
i nt ul b
i nt G b
Capabi lity * Ret ur nedCap;

|getattr

To return the attributes of a directory through a UNIX stat structure.

i nt
|getattr (DirCap, StatBuf, Account, UD GD)

Capabi lity *Di r Cap;
struct stat * St at Buf ;
Capability *Account ;
i nt ul b
i nt G b

lgetnsparams

To get (fetch) the Name Server global parameters.

i nt
| get nsparans (SysAdmin, UD GD)
NSSysAdmi nSt r uct *SysAdni n;
i nt ul b,
i nt anbp;
|getstats

To get the statistics kept by the Name Server.

i nt
| getstats (StatRec, UD, GD)
NSComnpl et eSt at Struct * St at Rec;

i nt Ul D,
i nt G b
|gettrash

To get the expiration time of a".trash” directory. Since |getattr uses the UNIX
stat structure to return the attributes and it has no field that maps to the
ExpirationTime, a specialized function is needed.

i nt

| gettrash (DirCap, Account, UD GD, ExpirationTinme)
Capabi lity *Di r Cap;
Capability * Account ;

-22 -

i nt Ul D

i nt anbp;

i nt *Expi rationTi ne;
linsert

To insert a capability into a directory with an entry name of Name.

i nt
linsert (DirCap, CapTolnsert, Nanme, Account, U D GD)

Capability *Di r Cap
Capability *CapTol nsert;
char *Nane;
Capabi lity * Account ;
i nt Ul b
i nt G b

linsertnolink

To insert a capability into a directory with an entry name of Name.

I'i nsertnolink differsfroml i nsert inthat thelink count of the item
being inserted is not incremented. 1t is assumed the caller has already taken care
of thelink count. This routine was written to satisfy an efficiency requirement
of saving an RPC message when newly created files are inserted into a
directory.

i nt
linsertnolink (DirCap, CapTolnsert, Nane, Account, UD GD)

Capability *Di r Cap;
Capability *CapTol nsert;
char *Nane;
Capabi lity * Account ;
i nt Ul D
i nt G b

Imakedir

To create adirectory called Name in the directory specified by DirCap. The
protection level is passed through the Account capability. Seethe discussion at
the top of this section.

i nt
| mekedir (DirCap, Name, Perns, Account, UD dD)

Capability *Di r Cap;
char * Narre;
i nt Per 1rs;
Capabi lity * Account ;
i nt Ul D,
i nt anbp;

Imvdirto

To move an entry named OldName from directory OldDirCap to new directory
NewDirCap with the name NewName.

-23-

i nt

Imvdirto (A dName, NewNane, A dDir Cap,

Uub, GD)

char *A dNane;
char * NewNane;
Capabi lity *A dDi r Cap;
Capability *NewDi r Cap;
Capability * Account ;
int Ul D

i nt ad D

lquiesce

NewDi r Cap, Account,

To “quiesce” the Name Server. That is, to have the Name Server flush any
modified objects from the cache and enter ReadOnly state (where directories
may be read, but not written). This means that the Timel astAccessed field in
the Directory Header will not be updated.

i nt

I quiesce (UD GD)

int
int

[rddir

QCc
oo

To read the specified number of entries from adirectory and return the entry
names, capabilities, and associated cookie values. The strategy in thisroutine is
to read the desired stuff from the directory using an “NS’ routine and an
efficient Name Server data structure. The dataisthen copied into the traditional

NFS specified format.

i nt

Irddir (DirCap, Startlndex, Count, Names, Caps, Cooki es,

Account, UD GD)
Capability *Di r Cap;
i nt *Start | ndex;
i nt *Count ;
char *Nanes[];
Capabi lity Caps[];
char * Cooki es[];
Capabi lity * Account ;
i nt Ul D
i nt a b
lrdlink

To return the contents of asymbolic link.
i nt

[rdlink (SynCap, Account, UD, GD, Contents)
Capability * Syntap;
Capabi lity *Account ;
i nt ul D,
i nt G D,
char *Contents;

-24-

I[renameto

To rename an entry in adirectory, changing the entry's name from OldName to
NewName.

i nt
I renaneto (O dNanme, NewNane, DirCap, Account, UD GD)

char *Jd dNane;
char * NewNane;
Capability *Di r Cap;
Capability * Account ;
i nt ul b
i nt G D

Ireplace

To replace the capability in adirectory entry specified by Name with anew
capability.

i nt
I replace (DirCap, ReplacingCap, Name, Account, UD GD)

Capability *Di r Cap;
Capability *Repl aci ngCap;
char *Name;
Capability * Account ;
i nt Ul b
i nt G D,

Irestart

To change the Name Server’ s ReadWrite mode to Write mode after the Name
Server hasbeen “quiesced.” | r est art re-starts normal operation.

i nt

Irestart (UD GD)
i nt
i nt

Qo

QCc

| setattr

To set whatever attributes the caller wishes to have set in the directory header.
There is an interface change that takes place here because the caller supplies
their attributesin aUNIX stat structureand | set at t r puts these attributes
into an AttributesStruct for presentation to the Name Server.

i nt
| setattr (DirCap, StatBuf, Account, UD GD)
Capability *Di r Cap;
struct stat * St at Buf ;
Capability *Account ;
i nt ul b
i nt G b

-25-

| setnsparams

To set one or more of the Name Server global parameters.

i nt
| setnsparans (SysAdminRec, UD, dD)

NSSysAdmi nSt r uct *SysAdni nRec;
i nt Ul D,
int a b,

| settrash

To set the expiration time of a".trash" directory. Once again we find ourselves
implementing something for no other reason than to maintain compatibility with
the mistaken past. Why not smply usethel change function since one of its

major purposes and reasons of existence isto change the expiration time? Why
not indeed.

i nt
| settrash (DirCap, Account, U D QD ExpirationTine)

Capability *Di r Cap;

Capability * Account ;

i nt ul b,

i nt G b

i nt Expi rationTi ne;
Isymlink

To create asymbolic link with the specified contents in a directory with an entry
name specified by Name.

i nt
symink (DirCap, Nanme, Account, U D, GD, Pernissions,

Contents)
Capability *Di r Cap;
char * Nane;
Capabi lity *Account ;
i nt Ul D;
i nt d b,
int Per nmi ssi ons;
char *Cont ent s;

3.3 Name Server Interface Layer

Thislayer contains al of the procedures that make up the “natural” interface to the
Name Server. These are the procedures that perform the individual Name Server
functions. Thereis, infact, aName Server Interface procedure for each Name
Server function. For example, the procedure NSMakeDi r performs the function
that makes a directory. In aperfect world the Name Server Interface procedures
would replace the LibUnix layer. However the world is sometimes imperfect and,
because the LibUnix interface procedures were here first, they remain.

The following routines comprise the Name Server Interface layer:

- 26 -

NSCr eat e
NSDel et e
NSFet ch
NSGet Attri bs
NSI nsert
NSMakeDi r
NSMak e Sy nnk
NSMoveDi r
NSReadDi r
NSReadSynink
NSSet Attri bs
NSSysAdmi n

3.3 Block Manipulation Layer

The Block Manipulation software layer contains al of the procedures that perform
the utilitarian functions performed by the Name Server. There are procedures that
set bitsin bit arrays, that add name-capability pairsto directories, that remove
name-capability pairs from directories, that list the contents of directories, etc.

Library package

Thereisasmall collection of procedures that are not specific to the Name
Server, and in fact have a somewhat general application. Some of these
procedures are called by other processes such as NSDE and Bonni e. These
procedures have been collected in afilenamed Li br ary. ¢ (it seems asthough
they should bein alibrary somewhere). The names of these “library” routines
are

Convert Ti me
Day Of Week
Get Synbol

| sDST

GetName package

The two procedures Get Nane and Get SynmNane are found in thefile

Get Nane. c. Get Nane isused to extract long (more than 16 characters)
names from a directory Entry and Get SyiNarre is used to extract the symbolic
link data from the Name field of a SymbolicLink.

Li st Di r calsCGet Name whenever it needsto return an Indirect Entry name.
Cet Nane scansthrough al of the (needed) NameBlocks totaling up the length
of the Indirect name. Oncethetotal length of the name has been determined
heap spaceis acquired and all of the various pieces of the name are copied into
this space making the name one contiguous string. Get Nane then returns a

pointer to this string.

Get SynName iscalled by NSGet SynLi nk to read SymbolicLink data.
FindEntry package

The Name Server often has occasion to find an entry givenits name. Such

occasions arise when inserting and deleting entries into and from directories.

-27 -

To smplify and isolate the somewhat difficult task of finding an Entry, the
procedure Fi ndEnt ry isprovided. Fi ndEnt ry and all of its associated
partsarefound in thefile Fi ndEnt ry. c. Fi ndEnt ry issupplied a pointer
to aBlockHead and aName to find. The search beginsin the BlockHead and,
if necessary, continues through any attached EntryBlocks until the nameis
found or all the entriesin the directory have been examined. The name of the
entry to find can be arbitrarily long. Fi ndEnt r y will fetch whatever
NameBlocks are needed to perform its search. If amatch to anameisfound
Fi ndEnt r y returns the associated capability and returns a boolean value of
“true”.

AddEntry package

All of the procedures needed to add an Entry (aname-capability pair) to a
directory areisolated in the sourcefile AddEnt ry. c. AddEntry isgivena
Name and a capability and the directory to add them to. AddEnt r y findsthe
first available entry dot and inserts the entry there. If the name contains 16
characters or less a DirectEntry ismade. 1f the name contains more than 16
characters an IndirectEntry ismade. If an additional EntryBlock is needed,
AddEnt r y obtainsone. If additional NameBlocks are required, AddEnt r y
obtainsthem. AddEnt r y updates the InUse, Indirect, and NameSpaceUsage
bits as appropriate.

RemoveEntry package

All of the procedures needed to remove an Entry (a name-capability pair) are
isolated in the source file RenmoveEnt ry. ¢c. RenoveEnt ry isgiven aName
and the directory to remove the entry from. RenoveEnt r y locates the name
(if it exists) and removes the Name and the corresponding capability from the
directory. If the nameis 16 characters or less (a DirectEntry) the DirectEntry is
removed by smply zeroing the 96 bytes. If, however, the name contains more
than 16 characters (an IndirectEntry) the 96 bytes are zeroed and the characters
comprising the remainder of this name are removed from the NameBlocks.

If the removal of characters from a NameBlock causes a NameBlock to become
empty, RenmoveEnt r y scavenges the NameBlock. If the removal of an Entry
causes an EntryBlock to become empty, RenoveEnt r y scavengesthe
EntryBlock if it isthe last EntryBlock in achain. Thereason for thisis that
scavenging free EntryBlocks in the middle of a chain would change the
“Cooki€’ index of the subsequent Entries. However, if there are one or more
empty EntryBlocks chained together and the last EntryBlock containsasingle
Entry that is being removed, then RenoveEnt r y will scavenge all of the
empty EntryBlocks.

Listing adirectory.
Listing the contents of a directory is accomplished by calling ListDir whichis
found in file ListDir.c. The caller suppliesthe directory to belisted, whereto

start listing in the directory, and a count of how many Entries are to be listed.
The Entries are returned in alinked list of structures called a DirldListStuct.

- 28 -

Algorithm for detecting potential loops

The directory structure provided by the Name Server isatree structured
directory. A tree structure by definition cannot contain "loops’. Because
clients can insert directory capabilities and can move directories the Name
Server needed some method of insuring that inserts and moves would not create
loops in the directory structure. Thereis aprocedure named CheckFor Loop
infile CheckFor Loop. c that performsthis check. Theinput to

CheckFor Loop isthe capability to the directory that is being inserted into and
the capability to the directory that is to be inserted.

The algorithm for checking for aloop is straight forward: Starting with the
directory that is being inserted (or moved) into, the".." (dot-dot) directory is
examined. If the".." capability is equal to the capability that isto be inserted,
thereisaloop. Following the path created by the".." directories,

CheckFor Loop continuestesting for amatch against the capability that isto
beinserted. If the capability to be inserted matches any of the ".." capabilities,
thereisaloop. CheckFor Loop finishesits search when the ".." directory
capability equalsthe “.” directory capability, because this only occursin the top
level directory (the RootOfRoots).

3.4 Cachelib Layer

Cachelib isacollection of software that allows the Name Server to manage its data
base. Cachelib maintainsthe dataas an array of fixed sized elements called objects.
The objects are stored in afile called the storefile. A store file may consist of
several physica files, but cachelib treats the filesasasingle logical file. Each
object in the store file has a unique cachelib identifier, which is a zero origin index
into the object array.

In addition, Cachelib provides the Name Server with:

an in-memory cache

access synchronization in a multi-tasking environment

dataintegrity through the use of primary and backup files

a transaction mechanism for ensuring consistency of multiple block updates

3.4.1 In-memory Cache

An in-memory cache is obtained from heap space by occi ni t . The size of the
cache (number of objects that can be held) is a site-configurable parameter that
can be changed in the configuration file and picked up next time the Name
Server isinitiadlized. The cacheisimplemented as an array of elements called
dots. Each dot contains an object's data (read from the store file) and some
state information about the object, such asthe cachelib id of the object and
whether the dot isdirty or not.

When the Name Server references an object, the Cachelib layer determinesiif the
object isin the cache or not. If the object is not in the cache, the Least Recently
Used (LRU) cache dot isfound and the object isread from the storefile into
that dlot. Cachelib keepsalinked list of LRU dots where the dots at the
beginning of the list are chosen first when searching for an available dot. Al

-29-

modified objects are marked as dirty and are written back to the store file before
being removed from the cache.

3.4.2 Access Synchronization

Cachelib provides a flexible mechanism for synchronizing access to objectsin a
multitasking environment. It provides this synchronization through two user
level procedures that manipulate internal semaphores. Name Server tasks
obtain access to objects by calling ocl ock and specifying the Id of the desired
object. Upon receiving theocl ock request Cachelib determines whether or
not the object is already in the memory cache. If the object is not in the memory
cache Cachelib finds an available dot and reads it in. If the object isin the
cache Cachelib simply P’ sthe dot semaphore. Accessto thedot isstrictly
first-come first-served.

A second parameter to ocl ock determines the type of access. shared or
exclusive. Tasksrequesting a shared lock share access to a dot with other
tasks. Tasks having a shared lock should not write to or ater the datain the
dot. (Thereisno way Cachelib can enforce thisrequirement. Thisisstrictly a
coding discipline.) Tasks requesting exclusive accessto adot wait until all
shared locks have been given up and then exclusive access to the dlot is granted.
Once an exclusive lock is granted, any other requests (shared or exclusive) for
the dot must wait until the exclusive lock isreleased. The holder of an
exclusive lock isfree to modify the object.

Access to dots (objects) is released through the ocunl ock procedure. One of
the parametersto ocunl ock isthe Id of the block that isto be released. Upon
receiving an ocunl ock request Cachelib V'’ sthe indicated dot semaphore
thereby making the dot available to another task.

Sometimes, when examining Name Server corefilesit is helpful to know the
last few eventsthat occurred regarding slot access. For this reason, a pointer to
ahistory buffer existsin the cache data structure. The history buffer contains a
list of records defined incache. h as:

typedef struct

unsi gned Taskl d;
unsi gned | dRequest ed;
unsi gned | dFr onSl ot ;
unsi gned Next | dFr onSl ot ;
unsi gned Sl ot Addr ess;
unsi gned St at e;
unsi gned TheTi ne;

} HistStruct;

Where St at e aninteger value defined in cache. h by:
t ypedef enum

STATE_| D_PRESENT;

STATE_| D_BEI NG_WRI TTEN;

STATE_| D_BEI NG_READ;
STATE_| D_BEI NG_FREED;

-30-

STATE_SLOT_CLEAN,
STATE_SLOT DI RTY;
STATE_DONE;
STATE_RETRY;
STATE_ERROR;

} States;

In the cachelib routine, sl ot . ¢, atask transitions through some of these states
before obtaining access to the desired object.

3.4.3 Data Integrity

Cachelib provides dataintegrity through the use of two devices (or files): a
primary and abackup device. Cachdlib isvery insistent on the following point:
there must be a distinct primary and backup device. In order for the
transaction mechanism to operate correctly there must be two distinct devices.

The data on the backup device should be an exact copy of the data on the
primary device. Theonly time the data ever differsisfollowing ahard crash
that has left the database in an inconsistent state. The differences should be
immediately resolved after the Name Server initializes. Differences that remain
following Name Server initialization are matters of grave concern and should be
immediately examined and rectified by the system administrator.

All device reads are from the primary device unless an I/O failure occursin
which case the backup device will be read. If Cachelib isunableto read from
either device it halts and demands that the disks be repaired. All writesareto
both the primary and the backup device. The transaction mechanism dictates
that al objectsin atransaction arefirst written to the primary device and then
these same obyjects are written to the backup device.

3.4.4 Cachdlib Transactions

Cachelib offers data consistency by allowing multiple blocks updates to occur
asasingle atomic transaction. At the Cachelib level thereisno way to know
how or if objects are related. Cachelib ssimply moves single (1024-byte blocks)
obj ects between the memory cache and the store file(s). It isthe responsibility
of the higher level software to bind objectsinto logical groupings. The Name
Server isthe higher level software that makes these groupings.

Whenever directory entries are added or deleted it can be the case that two or
more blocks are altered (created, deleted, updated). For example, if an Entry
with avery long name is added, one or more NameBlocks may be obtained and
an EntryBlock may be updated or obtained. Likewise, if an Entry is deleted,
several NameBlocks and/or EntryBlocks may be altered. It isvitaly important
that all of these atered blocks are updated as asingle transaction and if afailure
of any sort occurs, nothing should be updated. 1f any portion of the update is
interrupted it should ook to the user asif the command never reached the Name
Server.

The Name Server groups blocks together with alinked list data structure called
aTransEntryStruct. Asblocks are updated and changed they are added to the
linked list of TransEntryStructs. When it istime to write these blocks to disk
the Name Server calls the Cachelib procedure WriteSlots passing the list of

-31-

TransEntryStructs. WriteSlots uses a*“ stable store” algorithm to insure the
blocks are written to the store files as an atomic transaction.

The stable store algorithm operates by writing its“intentions’ to afile called a
“Transaction Log File’. These intentions take the form of “all the cachelib I1ds
that are to be written asagroup.” For example, if WriteSlotsis given the Ids of
four blocks that are to be written from the memory cache to the storefiles, it
first writes these four Idsinto the Transaction Log File. The format of a
Transaction Log Fileisshown in Figure 14. After the Transaction Log Fileis
safely written, WriteSlots then writes the individual blocksto their respective
dots. First it writesto all the objectsin the primary file and then to these same
objects in the backup storefile. This simple agorithm insures that these blocks
are written as a single transaction because if afailure of any sort (Kernel panic,
hardware fault, etc.) occurs, the next time the Name Server isinitiaized, the
Cachelib initialization software examines the Transaction Log File and corrects
any inconsi stencies that might have occurred. Theinformationin the
Transaction Log File is sufficient to resolve any inconsistencies that may have
occurred at any point in the transaction.

Thereis an interesting problem that may occur. What happensif the system
(repeatedly) crashes during Cachelib initidization? The stable store algorithm
must recognize this situation and survive it. To solve this potential problem a
second file called the “ Transaction Journal File” isused. Thisfileisused only
during initialization to record the progress of any restore efforts. Using the
Transaction Log File and the Transaction Journal File, Cachelib can insure
consistent multi-block updates.

-32-

Transaction Log File

‘TRAN'

Timestamp

Num Entries

Space for 1020 Ids. Each
entry isaCachelib Id that is
apart of this transaction.

Figure 14. The Transaction Log Fileis composed of 4 fields: a consistency
string “TRAN”, the current time, the NumEntries (the number of block Idsto
be found in the Id array), the Ids of the blocks to be written during this

transaction.

Inincludefilecache. h the Transaction Log File is defined as:

t ypedef struct TransJournal Struct

char ConsistencyString[4];
i nt NunEntri es;

i nt 64 Ti meSt anp;
i nt Ent ry[MAX_TRANS ENTRI ES] ;

} TransJournal Struct;

-33-

3.5 Block 1/0 Layer

The Block 1/0 layer is used by Cachelib to performitsdisk 1/0. Thislayer is
necessary to perform “device’ (also caled “partition”) 1/0 because 1/0 to devices
can only be donein 4096 byte blocks and the I/0 must begin and end on 4096 byte
boundaries. However, Cachelib wantsto read and write objects that are less than
this. Each Name Server block is 1024 bytesin length. The Block 1/O layer
provides a solution to this problem by providing a cache of several 4096 byte
buffers. When Cachelib reads one of its (small) objects, the Block /O layer finds
an empty (large) buffer from among its pool of buffers and reads in the 4096 bytes
that contain the object. The object isthen copied into the requester's buffer. If an
empty buffer cannot be found, the Block 1/0 layer obtains a new one.

When the files used by the Block 1/O routines to read and write the disk are opened
an “option"” that insures that the data will not pass through any UNIX buffersis
used. Itisvitally important to the correct operation of the Name Server that al
writes to adevice are exactly that, awrite to a device, not to some system buffer.

Overlapping, or asynchronous I/O, is accomplished through the tasking
mechanism. While atask iswaiting for its I/O to complete, another task may run
and “launch” its1/O. Aseach I/O completes the corresponding task is awakened.

3.6 SMILE

SMILE (for System/M achine-1 ndependent L ocal Environment) is a portable
tasking package developed at LLNL. The Name Server relies on this software layer
for its multi-tasking environment. For more information on SMILE seethe SMILE
documentation.

4.0 Required Files

There are several files that must be present for the Name Server to operate correctly. Some
of these files are configuration files which contain run-time configuration parameters, and
others are data files used by the Name Server. The path namesto all of thesefilesare
obtained through callsto Resol vePat h.

Configuration files (read at initialization):

. Name Server configuration file.
. file containing the RootOf Roots capability.
. password file.

Datafiles used by the Name Server:

primary databasefile.
backup databasefile.
transaction log file.
transaction journal file.
Name Server log file.
Cachelib logfile.

5.0 Initialization

When the Name Server “comes up” (initializes) it goes through a number of steps:

6.0

Itinitializestwo of itslog files: NSLog and NSCachel.og. The Name Server writes
the current time and the values of all the initiaization parametersinto the NSLog
file. Cachelibwritesto the NSCachel og file.

It discoversits own address by acall to Resol veNet Addr .

It reads anumber of global parameters from the configuration file. These
parameters tell the Name Server the size of its memory cache, the number of store
files, the types (file or device) of the store files, and whether or not to do
checksumming.

It initializes (zeros) its statistics records.

It initializes the storefiles with a call to the Cachelib routine osf i ni t . During this
step al repairs (if needed) to the store files are performed. |f there was a crash that
left the store file(s) in an inconsistent state Cachelib, using the transaction
mechanisms, will correct the inconsistencies.

It builds and initializes its memory cache with acall to the Cachelib routine
occinit.

It builds the TrashHash table used by Shiva.
It forks the Shivatask.

It forks several tasks that service client requests.

Core files

If the Name Server detects an internal inconsistency it will “crash”. A crash isalways done
in two steps: it writes a message to the NSLog and then calls the CRASH macro. The
CRASH macro calsthe Cr ash procedure passing it the name of the source file containing
the currently executing procedure and the current line number. Cr ash writesthis
information into NSLog. Cr ash then looks for an existing core file in the current working
directory and if oneisfound it changesits name to

where

cor e- mmdd- hhmm

mm the month
dd the day

hh the hour
m the minute

Crash thencdlsabort and the Name Server goes to visit its ancestors.

-35-

7.0 Orphans

Itis possible, if acrash occurs at precisely the wrong time, for the Name Server to create
an orphaned block. An orphaned block isablock that is not on the Cachelib freelist, and
is not pointed to by any other (Name Server) blocks. Orphaned blocks do not cause any
trouble for the Name Server and do not in any way cause the database to be inconsistent.
In fact, the only problem caused by orphaned blocksiis that the space they occupy in the
database could be used for better purposes.

An orphaned block can occur in the following 2 ways:

Suppose the last Entry from an EntryBlock is being deleted and that this EntryBlock is
thelast (or only) EntryBlock in achain. Recall that whenever the last Entry isremoved
from the last EntryBlock the block is scavenged. |f an inopportune crash occurs during
this“update” an orphaned block could result.

Suppose that a new block is obtained because of almkdir request or for use asa
NameBlock or an EntryBlock. If an inopportune crash occurs during this operation an
orphaned block could result.

7.1 How?
To preserve the integrity of the database, deletes are processed as follows:

+ all blocks (excluding the “last block™) that have been modified are written asa
transaction to the database.

« the“last block” is deleted.

If a crash occurred between these two steps an orphaned block (the “last block” in this
example) can occur. Note that orphaned blocks can also occur when attempting to
delete the last NameBlock in a chain or when deleting a directory.

To preserve the integrity of the database, new blocks are obtained as follows:

» thecachelibroutine osget en iscaled. osget en getsthe next free block in the
store file and removes it from the cachelib freelist.

+ all blocks (those that point to the new block) that have been modified are written
as atransaction to the database.

If a crash occurs between these two steps an orphaned block can occur.

7.2 Why?

This problem has to do with history, cost, and time. When transaction processing was
put into Cachelib we immediately knew there was going to be a problem with “ del etes”
and "creates’. The transaction mechanism was designed so that the upper level (above
Cachelib) software could control the blocks that are included in a transaction.
Obtaining and deleting cachelib blocksis a problem because it operates at alevel too
low to be included in the transaction mechanism and it involved the update of two
blocks (and the store file header). Cachelib already had a correct and sophisticated
algorithm for detecting and correcting partially allocated blocks. Rather than take the

-36-

time to redesign the way cachelib obtains and del etes blocks and integrate the new
method into the transaction mechanism, we decided to live with the problem and accept
the consequences. Since the consequences are that a handful of orphaned blocks may
be created each year , who cares? Thisisa problem that can be lived with for centuries
before ever being noticed.

However, even though the problem appears to be trivial, a solution has been provided.
NSDE has a command that searches a Name Server database for orphaned blocks. If
any are found they are reported. After insuring that the reported blocks are indeed
orphans, Bonni e can be used to zap the blocks (withthedst command). Itis
strongly recommended that the “orphan search” done by NSDE is performed on a copy
of the (non-active) database. It should never be performed on the (live) database that
the Name Server is currently connected to because the real database can be "caught” in
an inconsistent state when new blocks are being added to or removed from directory
chains. It isfurther recommended that “orphan searches’ (and other consistency
checks) be performed on aroutine (monthly) basis.

-37 -

